Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/4/1/eaaq1407/DC1

Supplementary Materials for

Complete enzyme set for chlorophyll biosynthesis in Escherichia coli

Guangyu E. Chen, Daniel P. Canniffe, Samuel F. H. Barnett, Sarah Hollingshead, Amanda A. Brindley, Cvetelin Vasilev, Donald A. Bryant, C. Neil Hunter

> Published 26 January 2018, *Sci. Adv.* **4**, eaaq1407 (2018) DOI: 10.1126/sciadv.aaq1407

This PDF file includes:

- fig. S1. Deletions of the *bchE* and *ccoP* genes in *Rba. capsulatus*.
- fig. S2. Diagram of the link-and-lock method for plasmid construction.
- fig. S3. The production of DV PChlide a in the IA and IM-cycI-ycf54 strains.
- fig. S4. The light-dependent production of MV Chlide a in the ID strain.
- fig. S5. The production of GG–Chl a in the DE/IG strain and of Chl a in the DE/BoP/IG strain.
- fig. S6. Verification of the production of Chl a in *E. coli* by LC-MS.
- fig. S7. Western blot analysis of the BoWSCP-His₁₀ expression in the DE/BoP/IG strain.
- table S1. List of genes used to assemble the Chl biosynthesis pathway in *E. coli*.
- table S2. Strains and plasmids described in this study.
- table S3. Oligonucleotide primers used in this study.

fig. S1. Deletions of the *bchE* and *ccoP* genes in *Rba. capsulatus*. (A) Deletion of the *bchE* gene. Lengths of PCR products: WT = 2762 bp; $\Delta bchE = 1046$ bp. (B) Deletion of the *ccoP* gene. Lengths of PCR products: WT = 2046 bp; $\Delta ccoP = 1164$ bp. Cyan: bacteriochlorophyll biosynthesis genes; magenta: assembly factors; yellow: regulatory genes; pink: cytochromes. Agarose gels of colony PCR products confirming the gene deletion are also shown.

fig. S2. Diagram of the link-and-lock method for plasmid construction. An SpeI site was engineered to the pET3a vector to allow link and lock cloning. Here shows consecutive cloning of 3 genes as an example. Additional genes can be added using the same methodology. Genes to be cloned were first ligated into the NdeI/SpeI sites of the modified pET3a vector, resulting in the pET3a-A, pET3a-B, and pET3a-C plasmids. The pET3a-A plasmid serves as the master vector and is cut with SpeI/HindIII. The *geneB* fragment serves as the insert and is cut out from the pET3a-B plasmid with XbaI/HindIII. As the SpeI enzyme shares compatible cohesive ends with the XbaI enzyme, these two sites are eliminated upon ligation. The resulting pET3a-AB plasmid contains only one SpeI site. For the construction of the pET3a-ABC plasmid, the pET3a-AB plasmid serves as the insert. RBS, ribosome binding site.

fig. S3. The production of DV PChlide a in the IA and IM-*cycI-ycf54* **strains.** A supplementary figure to Fig. 3C. Pigment accumulation in described *E. coli* strains was analyzed by HPLC with elution profiles monitored by absorbance at 440 nm. The in vivo activity of the *Synechocystis* cyclase is demonstrated by the accumulation of DV PChlide a in the IM-*cycI-ycf54* strain. The lack of alignment of the major elution peak of IM-*cycI-ycf54* with the other elution profiles arises from the use of a different HPLC column used to analyze the IM-*cycI-ycf54* sample. However, the diagnostic absorption of DV PChlide a shown in the inset, recorded for the major elution peak of the IM-*cycI-ycf54* sample, shows that the addition of *cycI-ycf54* to the IM construct confers cyclase activity on the *E. coli* strain.

fig. S4. The light-dependent production of MV Chlide a in the ID strain. A supplementary figure to Fig. 3D. Pigment accumulation in described *E. coli* strains was analyzed by HPLC with elution profiles monitored by absorbance at 440 nm (shown in black) and 665 nm (shown in blue).

fig. S5. The production of GG–Chl a in the DE/IG strain and of Chl a in the DE/BoP/IG strain. A supplementary figure to Fig. 3E. Pigment accumulation in described *E. coli* strains was analyzed by HPLC with elution profiles monitored by absorbance at 665 nm.

fig. S6. Verification of the production of Chl a in *E. coli* **by LC-MS.** The pigment extract from the DE/BoP/IG strain and the Chl a standard was analyzed. Mass spectra of the dominant peak present in the elution profiles are shown.

strain. Soluble fractions isolated from *E. coli* cell lysates by centrifugation, were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Resolved proteins were transferred onto a polyvinylidene fluoride membrane for immunodetection. The membrane was incubated with an anti-6-His primary antibody (Bethyl), and then with a secondary antibody conjugated with horseradish peroxidase (Sigma-Aldrich). The predicted molecular weight of the BoWSCP-His₁₀ protein is 20.8 kDa.

Gene	Locus	Organism	Annotation
chlI	slr1030	Synechocystis sp. PCC 6803	I subunit of magnesium chelatase
chlD	slr1777	Synechocystis sp. PCC 6803	D subunit of magnesium chelatase
chlH	slr1055	Synechocystis sp. PCC 6803	H subunit of magnesium chelatase
gun4	sll0558	Synechocystis sp. PCC 6803	porphyrin-binding protein that enhances magnesium chelatase
chlM	slr0525	Synechocystis sp. PCC 6803	magnesium-protoporphyrin IX methyltransferase
acsF	RGE_33550	Rubrivivax gelatinosus IL144	O2-dependent magnesium-protoporphyrin IX monomethyl ester cyclase
por	slr0506	Synechocystis sp. PCC 6803	light-dependent protochlorophyllide oxidoreductase
bciB	slr1923	Synechocystis sp. PCC 6803	ferredoxin-dependent 8-vinyl reductase
chlP	sll1091	Synechocystis sp. PCC 6803	geranylgeranyl reductase
chlG	slr0056	Synechocystis sp. PCC 6803	chlorophyll a synthase
dxs	b0420	Escherichia coli	1-deoxy-D-xylulose-5-phosphate synthase
crtE	RGE_33730	Rubrivivax gelatinosus IL144	geranylgeranyl pyrophosphate synthase

table S1. List of genes used to assemble the Chl biosynthesis pathway in E. coli.

table S2. Strains and plasmids described in this study. ^{*}Research Institute for Photosynthetic Hydrogen Production, Kanagawa University, Japan. [†]Institute of Microbiology, Department of Phototrophic Microorganisms, Třeboň, Czech Republic. [‡]Indiana University, USA. [§]Department of Biochemistry, University of Oxford, UK.

Strain/Plasmid	Characteristics	Source			
<u>E. coli</u>					
JM109	Cloning strain for plasmid construction	Promega			
S17-1	Conjugation strain for transfer of plasmid to Rba. capsulatus	(37)			
C43(DE3)	Expression strain for in vivo assay and assembly of chlorophyll biosynthesis	(11)			
	pathway				
<u>Rvi. gelatinosus</u>					
WT	IL144	S. Nagashima [*]			
$\Delta bchE\Delta acsF$	Unmarked deletion of the $bchE$ and $acsF$ genes in WT	(5)			
<u>Synechocystis</u>					
WT	sp. PCC 6803, glucose tolerant	R. Sobotka [†]			
$\Delta chlP$	Em ^R replacement of the <i>chlP</i> gene in WT	(10)			
<u>Rba. capsulatus</u>					
WT	SB1003, Rif ^R	C. Bauer [‡]			
$\Delta bchE\Delta ccoP$	Unmarked deletion of the <i>bchE</i> and <i>ccoP</i> genes in WT	This study			
Plasmid					
pK18mobsacB	Allelic exchange vector, Km ^R	J. Armitage§			
pK18∆bchE	Upstream-NdeI-downstream of the Rba. capsulatus bchE gene cloned into	This study			
	XbaI/HindIII sites of pK18mobsacB, Km ^R				
pK18∆ccoP	Upstream-NdeI-downstream of the Rba. capsulatus ccoP gene cloned into	This study			
	XbaI/HindIII sites of pK18mobsacB, Km ^R				
pBBRBB-Ppuf ₈₄₃₋₁₂₀₀	Expression vector carrying the 843-1200 region of the <i>puf</i> promoter of <i>Rba</i> .	(35)			
	sphaeroides, Km ^R				
pBB[acsF]	The <i>Rvi. gelatinosus acsF</i> gene cloned into the BglII/NotI sites of pBBRBB-	This study			
	<i>Ppuf</i> _{843–1200} , Km ^R				
pET3a-acsF	The <i>Rvi. gelatinosus acsF</i> gene with an added SpeI site cloned into the	This study			
	NdeI/BamHI sites of pET3a, Amp ^R				
IM	Link and lock cloning, five genes <i>chlI-chlD-chlH-gun4-chlM</i> cloned into	This study			
	pET3a, Amp ^R				
IA	Link and lock cloning, six genes <i>chlI-chlD-chlH-gun4-chlM-acsF</i> cloned into	This study			
	pET3a, Amp ^{κ}				
ID	Link and lock cloning, eight genes <i>chll-chlD-chlH-gun4-chlM-acsF</i>	This study			
	<i>-por-dvr</i> cloned into pET3a, Amp ^K				
IG	Link and lock cloning, nine genes <i>chl1-chlD-chlH-gun4-chlM-acsF</i>	This study			
DE	<i>-por-dvr-chlG</i> cloned into pET3a, Amp ^K				
DE	The <i>E. coli dxs</i> and <i>Rvi. gelatinosus crtE</i> genes cloned into the Ncol/HindIII	This study			
D D	sites and Ndel/Xhol sites of the pCOLADuet1 vector, Km ^k				
BOP	The BowSCP-His ₁₀ coding sequence and <i>Synechocystis chIP</i> gene cloned	This study			
	into the NCOI/HINDIII sites and Ndei/Ahol sites of the pACYCDuet1 vector,				
D.A					
шчі-сусі-усј34	cloned into pET3a. Amp ^R	THIS STUDY			

Primer Sequence (5'-3') bchEUpXbaIF GCTCTAGAGGAGCTGATCCCGCCCTTCC bchEUpR GCCGTCACTCCTTCTTATTCGCGCATGGCTGACCCTCC GGAGGGTCAGCCATGCGCGAATAAGAAGGAGTGACGGC bchEDownF bchEDownHindIIIR GAGTCTAAGCTTTCGACCCGGAACCGC bchEScreenF GGAATAGCCTTTTTCCGGTGC GGTTGTCATCGATGCGGAAG bchEScreenR ccoPUpXbaIF GAGTCTTCTAGAGCTATCTGGCCAATGTGCCGC ccoPUpR GATCCGTTTGGCTGTTACTGGCTCATCTCCACGCCTCCT ccoPDownF AGGAGGCGTGGAGATGAGCCAGTAACAGCCAAACGGATC ccoPDownHindIIIR GAGTCTAAGCTTGCCAGATCTCGAGCCCGAAGA GCAATCGGTGGTGCCGGAATC ccoPScreenF ccoPScreenR CCAAGCCCGGCCATGATCAGA acsFremoveBglIIF GATCACCAACGAGATATCCAAGCAGGT acsFremoveBglIIR ACCTGCTTGGATATCTCGTTGGTGATC GAGTCTAGATCTATGCTCGCGACCCCGACGAT acsFBglIIF GAGTCTGCGGCCGCTCACCATGCCGGGGCCATGC acsFNotIR acsFNdeIF CGCCATATGCTCGCGACCCCGACGATCGAATC acsFSpeIBamHIR GCCGGATCCACTAGTTCACCATGCCGGGGGCCATG AAAGATCCTCTGGAGTCCATTGATTCC chlIremoveXbaIF chlIremoveXbaIR AATCAATGGACTCCAGAGGATCTTTCC chlIremoveHindIIIF TTGTCGATGAGGCTTAACGTCG chlIremoveHindIIIR ACGTTAAGCCTCATCGACAACG pETaddSpeIF ATCCGGCTACTAGTAAAGCCCCGAAAGGAAGC pETaddSpeIR TTCCTTTCGGGCTTTACTAGTAGCCGGATCC gun4NdeIF TCCATATGTCTGATAATTTGACC gun4SpeIR TCACTAGTTTACCAACCGTATTGGGACC gun4removeXbaIF AAACCCTCCGGAACCTAGAACAGG gun4removeXbaIR TTCCTGTTCTAGGTTCCGGAGGGTTTGG gun4removeHindIIIF AAGAATTTACCAAACTTTGGCCGAAAATTGG gun4removeHindIIIR AATTTTCGGCCAAAGTTTGGTAAATTCTTTTCC GCGCATATGACCAACGCCGCCCTAGACG chlMNdeIF chlMSpeIBamHIR GCCGGATCCACTAGTTAAGAGCGCACCGCCTCTAAAATACG porNdeIF GCCCATATGGAACAACCGATGAAACCCACGG porSpeIBamHIR GCCGGATCCACTAGTCTAAACCAGACCCACTAACTTTTC porremoveHindIIIF ATACGGAGCTAAGGCCTTAATTGAC porremoveHindIIIR GTCAATTAAAGCCTTAGCTCCGTAT dvrNdeIF GCGCATATGACCGTTCCTGCCCCCACC dvrSpeIBamHIR GCGGGATCCACTAGTTATTGCTGGGGAAGTTTATACTGC dvrremoveSpeIF GGAAACTACTAGCAGATCGCCAGAAACG dvrremoveSpeIR CGTTTCTGGCGATCTGCTAGTAGTTTCC chlGNdeIF GCGCATATGTCTGACACACAAAATACC chlGSpeIBamHIR GCCGGATCCACTAGTCAAATCCCCGCATGGCCTAGG chlPNdeIF GCGCATATGGTATTACGGGTAGCAGTCG chlPSpeIBamHIR GCCGGATCCACTAGTTAAGGGGGCTAAAGCGTTACC chlPXhoIR GGAACTCGAGTTAAGGGGGCTAAAGCGTTACCC dxsNcoIF GGCCCATGGAGTTTTGATATTGCCAAAT dxsHindIIIR GGCAAGCTTTTATGCCAGCCAGGCCTTGATT dxsremoveHindIII1R GAAGAGTACAGCTTACCGGAAA TTTCCGGTAAGCTGTACTCTTC dxsremoveHindIII1F dxsremoveHindIII2R CAGGACCGGCAGCTTTTGAATCG dxsremoveHindIII2F CGATTCAAAAGCTGCCGGTCCTG crtENdeIF TCTCATATGAACACGATGACTCGCATCGA GGCCTCGAGTCAAGCGGTCTGGGTCGGAG crtEXhoIR GCGCATATGGTTAATACCCTCGAAAAGCCCGGAT cycINdeIF cycISpeIBamHIR GCGGGATCCACTAGTTAGCGCACAGCTCCAGCCAACTGA GCGCATATGGCTACCTATTATTATGCTTTGGCAAG ycf54NdeIF GCGGGATCCACTAGTCTAATCCAGGGATGCAAGGGGGTC ycf54SpeIBamHIR

table S3. Oligonucleotide primers used in this study.