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5.1 Introduction

Metabolism is the sum of all biochemical reactions that take place in living cells.
Chapters 2 and 4 show that metabolism can be mathematically converted into
equations by connecting all the reactions and metabolites based on reaction
stoichiometry. The rate of each metabolic reaction can accordingly be estimated
using constrained-based approaches, e.g. flux balance analysis (Chapter 2).
While such approaches rely mainly on the stoichiometry of all reactions, rates
of single reactions could also be calculated based on their own characteristics
including enzyme concentrations, enzyme properties, metabolite concentra-
tions, as well as how these factors can be integrated, i.e. the rate expressions,
which is referred to as reaction kinetics. This encourages to integrate reaction
kinetics with stoichiometric models, resulting in kinetic models of metabolism.
Kinetic models are more explicit than stoichiometric models, and therefore
suitable for some particular applications and analyses, especially metabolic
control analysis (MCA), which will be detailed in Chapter 6. Here the kinetic
models of metabolism are introduced followed by examples on the construction
of kinetic models as well as applications. Note that most of the principles
related with metabolism are also relevant for other dynamic processes in biology
that could be described using kinetic models, including signaling pathways,
pharmacokinetics, circadian rhythms, the cell-cycle, population dynamics, and
so on.

5.2 Definition of Enzyme Kinetics

5.2.1 Michaelis–Menten Formula

The Michaelis–Menten formula is one of the earliest and best known mechanistic
models to describe enzyme kinetics [1], which we will regard here as the basis for
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Figure 5.1 Relationship between parameters and reaction rates in Michaelis–Menten
formulated enzyme kinetics. (a) KM is equal to the substrate concentration when the reaction
rate v reaches half of the maximum reaction rate (Vmax). (b) The maximum reaction rate is
elevated when increasing the kcat or enzyme level. (c) The reaction rate is decreased when
increasing the KM.

the building of kinetic models that is introduced later in this chapter. Note that
not all enzymes demonstrate Michaelis–Menten kinetics, but it is a common and
versatile approximation for most reactions. At the first glance, the reaction rate
dependency on substrate concentration can be accurately described using the
Michaelis–Menten formula (Figure 5.1a). In general, this expression is suitable
for one-substrate reactions without backward reactions and effectors:

E + cS

k−1
⇄
k1

EcS →kcat E + cP, (5.1)

where k1 and k−1 are the association and disassociation constants for the enzyme
and the substrate, respectively; and kcat is the catalytic rate constant, or the
turnover number of the enzyme. c represents metabolite, where cS is substrate
and cP is product, while E and EcS are the enzyme and enzyme–substrate
complex, respectively.

By taking the assumption that the concentration of enzyme is much smaller
than the concentration of substrate, the product formation rate can be calculated
using the Michaelis–Menten formula:

𝜈 =
dcP

dt
=

Vmax ⋅ cS

cS + KM
(5.2)

In the above expression,

KM =
k−1 + kcat

k1
(5.3)

Vmax = kcatEtotal (5.4)

dEcS

dt
+ dE

dt
= 0 or Etotal = E + EcS = constant, (5.5)

where V max is the maximum reaction rate and KM is the Michaelis or affinity con-
stant for the substrate, which are two important kinetic parameters of enzymes.
Etotal represents the total enzyme concentration, by combining the concentration.
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5.3 Factors Affecting Intracellular Enzyme Kinetics

With the Michaelis–Menten formulation, the influence of enzyme properties
(KM, kcat), enzyme abundance (Etotal), and metabolite concentration (c) on the
dynamic behavior of a reaction can be explained mechanistically. Firstly, the
kcat reflects the maximum catalytic efficiency of an enzyme. As kcat increases,
the maximum reaction rate is enhanced accordingly (Figure 5.1b). The kcat of a
specific enzyme by itself can be influenced through inhibition, activation, syner-
gistic effects, and allosteric regulation. For example, so-called noncompetitive
inhibition could slow down the enzyme catalytic efficiency, as binding of the
inhibitor prevents the enzyme from catalyzing the reaction, thereby reducing
the amount of effective enzyme and reducing the apparent kcat.

As another key enzyme parameter, KM characterizes the affinity between the
enzyme and its reactant c. Its value is not constant across reactions and depends
on enzyme structure, substrate structure, as well as the environmental pH, tem-
perature, and ionic strength. Once the external conditions are fixed, KM is equal
to the substrate concentration at which the reaction rate reaches half of V max
(Figure 5.1a). If cS ≫KM, the reaction rate approaches V max while if cS ≪KM, the
reaction rate is then simplified as:

𝜈 =
Vmax ⋅ cS

KM
(5.6)

In this case of low cS concentration, there exists an approximately linear
correlation between the reaction rate and substrate concentration (Figure 5.1a).
Meanwhile, if the substrate concentration is fixed, an enzyme with a higher
KM value results in a lower reaction rate (Figure 5.1c). Generally, the ratio of
kcat/KM can be used to evaluate the effectiveness of enzymes from different
sources that all catalyze the same reaction: a higher kcat/KM indicates a higher
catalytic efficiency of an enzyme, as a higher reaction rate can be reached with
less substrate present.

In addition to the enzyme characteristic parameters, also the enzyme levels
constrain the rate through each reaction. Increases in the level of enzyme trans-
late to increases in reaction rates (Figure 5.1b), especially if the substrate con-
centration is high (cS >KM). In vivo, the intracellular enzyme levels are a tradeoff
between the protein synthesis and protein degradation, which by themselves are
affected by processes such as product inhibition, transcriptional, and feedback
regulation. In metabolic engineering, enzyme levels can therefore be augmented
through multiple strategies, i.e. increasing the gene copies, improving the enzyme
stability, and relieve feedback inhibition of end products.

Although the enzyme kinetics are useful to describe enzyme dynamics in iso-
lation, they are not sufficient to describe the dynamic changes in metabolite con-
centrations and reaction rates in vivo. In reality, enzymes function in the context
of a metabolic network consisting of many different reactions and enzymes, and
dynamics of enzymes will mutually influence each other. This gives rise to emerg-
ing properties of the metabolic network, which is a function of the enzyme kinet-
ics but can only be observed when studying the whole system and not only its
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constituent parts in isolation. Therefore, it is required to take the enzyme kinetics
and combine these in kinetic models.

5.4 Kinetic Model: Definition and Scope

5.4.1 What Is a Kinetic Model?

Kinetic models mechanistically represent the processes that take place within a
cell, and these models are made up of a series of ordinary differential equations
(ODEs). The ODEs encompass the detailed rate expressions and kinetic parame-
ters that describe the dynamic behavior of individual reactions within the model,
as described in the previous section. The mathematical formalisms of kinetic
models, whether they follow Michaelis–Menten or other kinetics, can be sum-
marized using Eq. (5.7). In the kinetic model, the enzyme kinetics and levels are
the parameters of the model while metabolite concentrations are variables, all
of which are absent in purely stoichiometric models. Thus, compared with stoi-
chiometric models, a kinetic model can predict changes and dynamics of reaction
rates (fluxes) and metabolites concentration over time [2].

dci

dt
= S ⋅ v(E; ci; k), i = 1, 2, 3,… , n, ci(0) = ci,0 (5.7)

In Eq. (5.7), S represents the stoichiometric matrix, v represents the vector of
metabolic reactions or fluxes, and ci,0 represents the initial metabolite concentra-
tion in the system. Each reaction rate (vj) is determined by the enzyme abundance
(Ej), metabolite concentration (ci), and the corresponding kinetic parameters (k).

5.4.2 Scope of Kinetic Models

Typically, kinetic models consist of tens to hundreds of metabolic reactions
with their detailed kinetic information from one or several sub-pathways. The
scope and size of a kinetic model depends on the computational resources
and the scientific questions to be answered. For long, kinetic models have
been used to describe the dynamics of sub-pathways consisting of up to 10–20
reactions, such as glycolysis in beef heart supernatant by Garfinkel et al. in
1968 [3]. Since then, larger kinetic models have frequently been reconstructed
while centering on multiple core metabolic pathways including glycolysis (EMP
pathway), the pentose phosphate (PP) pathway, and tricarboxylic acid (TCA)
cycle, which generally contain 50–100 reactions with detailed ODEs. To further
increase the coverage of cellular metabolism, near genome-scale kinetic models
with over 200 reactions have been developed for several intensively studied
model organisms, i.e. E. coli [4] and S. cerevisiae [5]. However, to date no full
genome-scale models (GEMs) with detailed enzyme kinetics have been built
for E. coli and S. cerevisiae, let alone lesser studied organisms. A kinetic model
requires the definition of rate equations and their respective parameters for
each of the reactions, which are currently unknown for many of the reac-
tions contained in GEMs. As an example, while there are about 700 Enzyme
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Commission (EC) numbers associated to the S. cerevisiae GEM (Yeast8.3),
only about 42 of these have KM values recorded in the relevant databases. An
alternative approach to overcome this lack of kinetic parameters for large size
models has been to use approximative rate equations, which will be discussed
below.

5.4.3 How to Build a Functional Kinetic Model?

The general procedures to establish a functional kinetic model are summarized
in Figure 5.2. After describing the metabolic network for which a model will be
constructed, the kinetic rate expressions for individual reactions are gathered and
subsequently combined with their respective parameter values to build a com-
plete model. In detail, the procedures to establish a kinetic model are divided
into the following five steps:

Step 1. Define the metabolic network. In this step, one needs to decide on
the scope of the metabolic network to be modeled, i.e. which sub-pathways
to include. Based on this a detailed metabolic network structure is built,
encompassing the stoichiometry of metabolites, reactions, and their respec-
tive enzymes. Ideally, also information regarding regulation and interaction
among the components of the network should be gathered. The metabolic
network is generated based on the genome annotation of the organism of
interest and by consulting previous studies (Figure 5.2).

Step 2. Define the kinetic rate expressions. Each reaction in the metabolic
model will be assigned a rate expression, of which the Michaelis–Menten
equation is one example. To infer kinetic rate expressions, the biochemical and
mechanistic information should be gathered from biological databases and
literature.

Step 3. Assign parameter values. The rate expressions from Step 2 require param-
eterization, and these enzyme-specific parameters are either measured from
experiments or queried from literature and/or databases. For unknown param-
eters, their value should be obtained by, e.g. taking reported values from the
same reaction but a different organism, or through inference by simulating the

1. Describe structure of metabolic network

2. Define kinetic rate expressions

3. Assign parameter values

4. Define initial concentrations

5. Model simulation

Quality control
and analysis

Kinetic
model

Cross
validation

Parameter
estimation

Quality
curation

Figure 5.2 Framework to build a functional kinetic model.
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model with arbitrary parameter values and compare the simulation results with
measured data.

Step 4. Define initial concentrations of metabolites and enzyme levels, based on
measured values or reported data.

Step 5. Conduct simulation with the complete kinetic model. With the informa-
tion from Steps 1 to 4, a kinetic model containing ODEs are defined (Eq. (5.7)).
During simulations with this model, measured physiological data, metabolite
concentrations, enzyme levels, and 13C labeled fluxes can all be used to evaluate
the predictive performance of the kinetic model. Once a kinetic model of high
quality is obtained, it will be further used for practical applications in metabolic
engineering and biological discoveries, as discussed later in this chapter.

As the reaction rate expressions and their related kinetic parameters, Steps 2
and 3, are arguably the most important components of a kinetic model, they will
be discussed in more detail below.

5.5 Main Mathematical Expressions in Description
of Reaction Rates

Reaction kinetics can be described with mathematical expressions where the
reaction rates are functions of kinetic parameters and the concentration of
metabolites. These rate expressions are of varying complexity, referring to the
catalytic mechanism they describe, potential regulatory properties, and the
number of required parameters, and include mechanistic, approximate, and
stochastic formulas. Of these, the stochastic formulas are typically the most
complex and computationally intensive, while their use should be deliberated if
stochasticity is expected to play an important role in the simulated system, such
as noise in signal transduction or gene expression. However, such processes
can often be disregarded when studying a large population of cells, such as
a bioreactor cultivation of micro-organisms, as the stochastic behavior is
normalized over the sheer number of cells. Instead, mechanistic (Box 5.1) and
approximate (Box 5.2) rate expression are most frequently used for kinetic
models of metabolism.

5.5.1 Mechanistic Rate Expressions

Underlying mechanistic rate expressions is the law of mass action, which assumes
that a reaction rate is proportional to the concentration of its reactants. While
mass action expressions are suitable for enzymatic or transporter reactions, the
equations become very large if every step of the enzyme catalytic process is
to be described and this results in many parameters that are hard to measure
(see Eq. (5.1), there would also be association and dissociation constants for
the product and a reverse catalytic constant). Instead, mass action kinetics
is typically reduced to the aforementioned Michaelis–Menten equation with
its apprehensible parameters, while the Hill equation is another example of a
mechanistic rate expression (Box 5.1). These mechanistic expressions distinctly
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clarify the roles of various factors on the reaction rates, as shown in the above
Michaelis–Menten equations. More importantly, such mechanistic expres-
sions can easily be extended based on new experimental evidences, to cover
reactions with more reactants and products, as well as with complex regulatory
mechanisms, i.e. activation and inhibition in enzyme activity by metabolites
(Box 5.1).

Box 5.1 Mechanistic rate expressions: two typical examples.

Michaelis–Menten. As introduced earlier in this chapter, the Michaelis–Menten
formulation is a mechanistic rate expression that can be used when the reaction
kinetics follow the distinct hyperbolic saturation curve (Figure 5.1). Based on
the simplified case shown in Eq. (5.2), the Michaelis–Menten formulation can
be extended to describe more complex cases, such as competitive substrate
inhibition, where a nonreactant metabolite competes with the substrate to bind
the same part of the enzyme.

𝜈 = dc
dt

=
Vmax ⋅ c

KM + c(1 + (c∕Ki))
, Ki is the inhibition constant (5.8)

Hill equation. Enzymes that have sigmoidal saturation curves can have their
kinetics described using a Hill equation. A typical case of such an enzyme is a
homomultimer, where the affinity of the subunits for the substrate increases if one
or more other subunits are already bound to the substrate. This cooperativity is
represented in the unitless Hill coefficient n which represents positive cooperativ-
ity with a value >1:

𝜈 = dc
dt

=
Vmax ⋅ cn

K0.5
n + cn , (5.9)

where K0.5 is the half-maximal concentration constant. If n = 1, K0.5 is equal to the
Michaelis constant (KM).

5.6 Approximative Rate Expressions

While mechanistic rate expressions are simplifications of mass action kinetics,
they can still be very complex for reactions with multiple reactants, products,
and/or intertwined metabolic regulation, such as the influences of pH, temper-
ature, and cofactor concentrations. Moreover, detailed mechanistic knowledge
and measured parameter values are typically inadequate for enzymes that are not
catalyzing reactions in central carbon metabolism. For nonmodel organisms, this
situation is further exacerbated by the sheer lack of measured kinetic parameters.
To circumvent these issues, approximative rate expressions is also adopted in the
kinetic model reconstruction. There are various approximative rate expressions,
including generalized mass action, log-lin, and lin-log (Box 5.2). Compared with
the mechanistic Michaelis–Menten formulation, the approximative rate expres-
sions are of lower complexity, thereby enhancing the computation efficiency for
large-scale kinetic models. Simulations of central carbon metabolism in E. coli
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using a lin-log model are consistent with a mechanistic model [6], even when
simple structures and few parameters were used in the lin-log model. Due to
the above advantages, lin-log expressions have been used to reconstruct a kinetic
model of yeast metabolism with 240 reactions [5].

Box 5.2 Approximate expressions: two typical examples.

Power-laws. Generalized mass action (GMA) is a so-called power law formalism
with noninteger exponents (Eq. (5.10)) [7, 8]. In the GMA expressions, the reaction
rate is proportional to the enzyme activity, as well as to the power law involv-
ing dependent and independent concentrations of metabolites. Compared with
mechanistic rate expressions, the GMA expressions reduce the parameters in the
formula.

vi = ki ⋅ Ei ⋅
m∏

j=1

caij

in,j ⋅
n∏

k=1

cbik
ex,k , (5.10)

where Ei represents the enzyme level; cin and cex are dependent (intracellular) and
independent (extracellular, or constant) metabolite concentrations, respectively;
ki, aij, and bik denote kinetic coefficients that can be obtained from fitting the
equation to observed enzyme dynamics.

Lin-log. The lin-log modeling approach is basically the same as the power law
formulation, but through transformation to the logarithmic domain a set of linear
equations are obtained, which significantly simplify parameter estimations. Thus,
even though the relation between the reaction rate and enzyme level, metabolites
concentration and kinetic parameters is highly nonlinear, the linear logarithmic
(lin-log) approximation handles reaction rates in a simple and linear manner to
obtain an analytic solution. In the lin-log expressions, the rate is proportional to
enzyme level, as well as to a linear sum of logarithms of metabolites concentration
[9] (the so-called lin-log), which is thus beneficial to reduce the kinetic parameters
used in the rate expressions.

𝜈i = Ei(ai + pi.1 ln cin,1 + pi.2 ln cin,2 + · · · + pi.m ln cin,m + qi.1 ln cex,1.

. + qi.2 ln cex,2 + · · · + qi,r ln cex,r), (5.11)

where Ei represents the enzyme level; cin and cex are dependent (intracellular) and
independent (extracellular, or constant) metabolite concentrations, respectively;
p and q represent the independent kinetic coefficients that are obtained by fitting
the rate expression to observed enzyme dynamics.

5.7 Approaches to Assign Parameters in the Rate
Expressions

Estimation of parameters in rate expressions is essential for having good predic-
tive performance of a kinetic model. However, the determination of parameter
through experimentation, estimation, or fitting is one of most challenging
aspects of kinetic model reconstruction. There are three main procedures to
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obtain kinetic parameters that are included in a rate expression, namely direct
experimental measurement through enzyme assays; querying databases and
literature of previously reported enzyme parameters; and parameter inference
using statistical analysis.

5.7.1 Direct Measurements of Kinetic Parameters in Enzyme Assays

Enzyme parameters can be measured in in vitro enzyme assays, using either puri-
fied enzymes or whole-cell extracts. The reaction rate is typically measured col-
orimetrically, e.g. by coupling the product formation with a chemical reaction
that causes a color change. Sequentially changing the substrate concentration in
the enzyme assays can then yield the KM and V max parameters that are part of
Michaelis–Menten expressions. Here it should be noted that the in vitro mea-
sured parameters can be different from those observed in vivo, even while a pos-
itive correlation between the in vitro and in vivo kinetic parameters exists [10].
Such inconsistencies are likely due to the fact that in vitro assay conditions are
distinct from the in vivo intracellular microenvironment, e.g. metabolite concen-
trations, temperature, pH, osmotic strength, and presence of potential inhibitors.
Nonetheless, it is not uncommon that V max values are reported at assay condi-
tions that give the highest activity but that are far from in vivo-like conditions,
and Van Eunen et al. showed that the use of such unrealistic parameters resulted
in unrealistic metabolite concentrations in a model of yeast glycolysis [11]. It is
therefore important to perform enzyme assays in conditions that are close to
in vivo conditions.

5.7.2 Querying Databases

Instead of measuring all kinetic parameters that are required for a kinetic
model, one can also leverage previous work and download kinetic data of
specific enzymes from the BRENDA (https://www.brenda-enzymes.org) and
SABIO-RK (http://sabio.villa-bosch.de/SABIORK) databases (Figure 5.3 as an
example), which now contain 68 963 and 648 732 enzyme entries, respectively,
with detailed annotation information [12, 13]. When querying and using this
public data in kinetic models, one implicitly assumes that the measured kinetic
parameters are conserved or similar for strains of different genetic background,
as the databases collate data from many different studies and not measurements
from one single strain isolate. Moreover, the parameters compiled in these
databases are measured under many different experimental conditions, of which
many are not representing relevant in vivo-like conditions. This does not render
the information from these databases unusable, but it does indicate that one
should be critical about the provided parameter values. In addition, the available
parameters are not evenly distributed across all enzyme catalyzed reactions:
many enzymes have been subjected to few studies, while for some enzymes
many experimentally measured parameter values are provided. To fully address
all these issues, it becomes near indispensable to perform parameter estimation
based on large scale of physiological data, as will be discussed later in this
chapter.

https://www.brenda-enzymes.org/
http://sabio.villa-bosch.de/SABIORK
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Figure 5.3 An entry example from SABIO-RK13 (http://sabio.villa-bosch.de/SABIORK) with
detailed reaction and kinetic information for the enzyme glucose-6-phosphate isomerase.
Source: HITS, gGmbH.

5.7.3 Inferring from Measured Fluxes

Besides directly measuring kinetic parameters, in vivo kcat values can be esti-
mated from accurate measurements of fluxes and protein abundances [10]
(Figure 5.4). Fluxes through the individual reactions can be determined based
on 13C metabolic flux analysis, or alternatively from flux balance analysis
(FBA). Enzyme levels can subsequently be determined by proteomics, where all
protein levels are quantitatively measured by mass spectrometry. From this, the
apparent kcat is calculated as the ratio between the fluxes and the corresponding
enzyme levels. By applying this approach across a series of different cultivation
conditions, across maximum apparent kcat values are regarded as the maximum

http://sabio.villa-bosch.de/SABIORK
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Figure 5.4 Procedure to calculate in vivo kcat values. For each reaction, the kcat is calculated
based on fluxes and enzyme abundances. By performing this procedure under a series of
cultivation conditions, reaction specific maximum kcat values are assigned.

in vivo kcat (Figure 5.4). Through this procedure, relatively reliable kcat values can
be obtained from their relevant in vivo conditions without laborious enzyme
assays. A drawback of this procedure is that it requires accurate simultaneous
determination of fluxes and proteomics data.

5.7.4 Parameters Inference Using the Statistical Analysis

While kinetic parameters can be obtained from databases or measured in vivo
or in vitro, it is not unlikely that a large number of parameters are still unknown
when constructing a kinetic model, especially for a model of large size. Conse-
quently, parameter inference through data fitting is increasingly used to get a
fully functional kinetic model. In general, parameter estimation aims to sample
reasonable parameter sets that minimize the distance between model predic-
tions and experimental data. Parameter estimation can be a complex process
for large-scale kinetic models, as the number of rate expressions with unknown
parameter values increases drastically. Thus, effective parameter fitting methods
become important to balance computation cost and accuracy in the parame-
ter inference. Various algorithms have been conceived to conduct the param-
eter estimation, of which Maximum Likelihood Estimator (MLE)- and Monte
Carlo-based approaches are widely used.

MLE-based approaches try to find the best estimate for each parameter
and quantify the uncertainties in these estimates, while Monte Carlo-based
approaches sample from probability distributions for each parameter, to extract
values that result in a reasonable output based on the optimized objective
function. Because of the nonlinear structures of kinetic models and the typical
large number of unknown kinetic parameters, MLE-based approaches are not
suitable for reasonable parameter fitting of complex and large kinetic models.
In contrast, Monte Carlo-based approaches estimate parameter distributions
instead of singular parameter values; this partially overcomes the drawbacks
of MLE, and is therefore commonly used for parameter estimation of large
kinetic models. Regardless which algorithm is used for parameter inference, the
estimated parameters should be comprehensively evaluated. For this, simulation
results that are obtained from the constructed kinetic models are to be com-
pared with relevant experimental measurements, until the model is able to yield
acceptable results.
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Example 5.1 A toy kinetic model.
A toy model with two reactions, two enzymes, and four metabolites, is

used here to illustrate how to generate a simple kinetic model for specific
sub-pathways, and how to use this kinetic model to predict the dynamic behav-
iors of the system (Figure 5.5). The five steps of kinetic model reconstruction
are:

1) Describe the structure of the toy network, made up of two reactions that are
catalyzed by enzymes E1 and E2, with their corresponding reaction rates v1
and v2.

2) Define the kinetic rate expressions. Michaelis–Menten kinetics are defined
for both reactions, where the first reaction has two substrates and therefore
a more expanded rate expression. Based on the network structure and rate
expressions, mass balance equations are defined for the four metabolites (c1,
c2, c3, c4), which describe how their respective concentrations are affected by
the reaction rates.

3) Assign parameters values for the two rate expressions from measurements or
databases.

4) Define initial concentrations of metabolites and enzymes, according to the
experimental condition or measurement.

5) Model simulation. The toy kinetic model can now be used to predict the evolu-
tion of fluxes and metabolites concentration data over time. The output of such
a time-course simulation is shown in Figure 5.5, where the concentration of the
first set of metabolites (c1, c2) decrease gradually, while the concentration of

Figure 5.5 A toy example to show how to build kinetic model.
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the intermediate metabolite (c3) first rises and then falls after 20 minutes, and
the concentration of end metabolite (c4) is gradually increasing.

Example 5.2 A functional kinetic model for core metabolic pathway of
yeast.

To display kinetic model reconstruction of a real sub-pathway, a kinetic model
covering glycolysis in yeast is taken as an example (Figure 5.6). To obtain a func-
tional kinetic model predicting the dynamic behavior of this pathway, the follow-
ing steps are essential:

1) Define the metabolic network. From literature reports, we can define the
metabolic pathway that we want to model, including detailed annotation on
reactions, metabolites, and enzymes. It is not uncommon to lump very long
pathways into simpler reactions, to reduce the complexity of the subsequent
kinetic model and decrease the number of unknown parameters. Here the
reaction network of EMP pathway is listed as a simple example (Figure 5.6)
of the real metabolic models, which consists of metabolites and enzymes for
each reaction from EMP pathway.

2) Define the kinetic rate expressions. Shown are the Michaelis–Menten rate
expressions for phosphoglucose isomerase (PGI) and phosphoglycerate
mutase (PGM), who among others affect the concentrations of glucose
6-phosphate and 3-phosphoglycerate, as detailed in their mass balances.

3) Assign parameters values, where enzymes that have had their kinetics
characterized can have their kinetic parameters collected from literature
or databases, shown here for PGI. Unknown parameters are estimated by
parameter inference while the known parameters are set.

Figure 5.6 Detailed steps to build a functional kinetic model which could predict the cellular
physiology. Source: Adapted from Smallbone et al. [14].
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4) Define initial concentrations based on the measured metabolite concentra-
tions (or assumption thereof ) and measured enzyme levels.

5) Model simulation. Predicted fluxes, enzyme levels, and metabolite concen-
trations should be compared with experimental values to validate the model.
Typically, multiple rounds of curation are required to result in a model that
is highly consistent with experimental measurements. Once the quality of the
kinetic model has been deemed sufficient, it will be used in the further appli-
cations, such as metabolic control analysis (Chapter 6) or strain design in
metabolic engineering.

5.8 Applications

Kinetic models can be used for various applications, which are largely divided
into three groups, i.e. (i) metabolic control analysis (MCA)-based methods; (ii)
time-course simulations of dynamic processes; and (iii) integrative analysis of
omics data.

Kinetic models enable the calculation of control of each enzyme on the
flux through a pathway through MCA-based approaches (Figure 5.7a). Key
enzymes that exert high control on a particular pathway indicate promising
targets in the fields of biotechnology and systems medicine. Indeed, kinetic
models have succeeded in predicting metabolic engineering targets that improve
productivity in microbial cell factories [15–17]. For example, a kinetic model was
used to identify limonene synthase as a key metabolic flux-controlling enzyme
for limonene biosynthesis in the cyanobacterium Synechococcus elongatus,
resulting in improved limonene production by increasing the enzyme level
through genetic engineering [17]. In systems medicine, kinetic models and MCA
approaches have been used to identify putative drug targets in biochemical
networks [18, 19].

Kinetic models are also uniquely suitable for simulating time-dependent behav-
ior that cannot be captured by steady state models, thereby possibly providing
optimization strategies for industrial bioprocesses (Figure 5.7b). Ideally, also the
extracellular conditions in which the cells are cultured should be modeled. An
example of this is the use of a kinetic model of Chinese hamster ovary (CHO) cells
to simulate a fed-batch cultivation, which was able to capture time-dependent
extracellular metabolite concentrations and the effect of various process variables
on antibody production. By simulating over 9000 combinations of process vari-
ables, e.g. cell density at inoculation; day at which the culture was shifted to a
lower temperature (a strategy to helps to balance cell growth and protein pro-
ductivity); how many days after inoculation the temperature shift took place; and
knockdowns of metabolic enzymes, the researchers we able to optimize antibody
production by modifying some of the process parameters [20].

With the increasing ease of high-throughput data generation, kinetic models
can provide a framework for the analysis of omics data, which are large-scale
measurements of cellular components, e.g. protein, mRNA, and metabolite
concentrations. Notably, some of the omics data have direct connections to
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Figure 5.7 Applications of kinetic models of metabolism. (a) In metabolic control analysis,
kinetic models are able to calculate the control of each enzyme on the flux through a network.
Enzymes with high control are potential targets for strain improvement and drug discovery.
(b) Kinetic models are able to simulate dynamic processes. The example illustrates measured
and simulated time-course concentrations of a metabolite in response to different levels of a
process variable. (c) Kinetic models are suitable for analyzing omics data as rate expressions
contain cellular components, i.e. metabolite (ci); enzyme (E); as well as metabolic rate (v),
which correspond to metabolomics, proteomics, and fluxomics data, respectively. Integrated
analysis of multiomics data can estimate enzyme kinetics and regulatory mechanisms.
The equation corresponds to Eq. (5.7).

the parameters and variables of kinetic models (Figure 5.7c). When analyzing
single-type omics data, kinetic models can give deeper understanding that
cannot be obtained from the data alone. For example, researchers found that
estimating kinetic parameters in personalized kinetic models of erythrocyte
metabolism are better representations of the individual’s genotype than based
on metabolomics data [21]. Furthermore, kinetic models enable integration of
multiple different types of omics data (multiomics), thereby bringing systematic
insights on metabolism and regulation. For example, researchers used a
kinetic modeling framework to perform integrated analysis of proteomics,
metabolomics, and fluxomics data and identified that substrate concentrations
are the strongest drivers of metabolic fluxes [22].

5.9 Perspectives

In essence, kinetic models can be regarded as stoichiometric models that are
augmented with rate expressions that account for kinetic information, which can
render this model approach advantageous over classical stoichiometric GEMs
in particular aspects. Kinetic models can quantitatively simulate metabolite
concentrations which cannot be achieved by stoichiometric GEMs, while
kinetic models are also more suitable to simulate dynamic responses where
GEMs rely on the steady state assumption. Meanwhile, the augmentation
with kinetic information also has drawbacks. Simulations with kinetic models
are relatively computationally expensive as nonlinear optimization problems
need to be solved. In addition, the construction of kinetic models requires
copious experimental knowledge on rate expressions and kinetic parameters,
and while these can be assumed, estimated, or simplified, this introduces more
uncertainties.
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Considering both the pros and cons of kinetic models and stoichiometric
GEMs, researchers have proposed hybrid modeling approaches that utilize
simplified rate expressions where enzyme turnover rates are set as constraints on
fluxes through stoichiometric networks [23]. Despite these advanced modeling
approaches, challenges remain including unknown parameters, which for such
models are purely turnover rates. This has raised calls for measurements of the
kinetome [24], i.e. all enzyme turnover rates in a cell, information that is also
required in so-called proteome-constrained models (Chapter 4).

With continuing progress in the generation and utilization of kinetic mod-
els, two directions can be envisioned for future advances. First, the quality of
kinetic models can be greatly improved. While pathway and network stoichiome-
tries can now largely be readily obtained from genome annotation and reaction
databases, the quality of kinetic models instead depends greatly on the availabil-
ity of knowledge on rate expressions, kinetic parameters, and concentrations of
cellular components such as metabolites. Although the kinetics of many enzymes
have been characterized, the obtained parameters are mostly in vitro, which are
not necessarily representative of their in vivo behavior [25]. While inference from
measured fluxes and omics data is promising, the amount of absolutely quanti-
fied omics data is still sparse, and it remains challenging to measure metabo-
lites from different subcellular compartmentation in eukaryotes [26]. All of these
points currently hamper improvement of kinetic models, but likewise indicate
where significant breakthroughs can be made. In addition to the approaches of
parameter estimation and inference as mentioned above, it is also anticipated
that machine learning algorithms will be able to effectively determine parameter
values in the near future, as such approaches have already shown applications in
various biological studies [27].

The second direction for further advancement in kinetic models would be the
efficacious implementation of kinetic models on a genome scale. A number of
recent efforts have been made to build genome-scale kinetic models, where the
kinetic model k-ecoli457 covers major parts of E. coli metabolism and has shown
even better predictive power than constraint-based approaches in terms of pre-
dicting yields of many products [4]. There are, however, several obstacles on the
way to genome-scale kinetic models. In addition to the high computational cost of
model simulations, again the lack of large-scale data and missing rate expressions
for individual reactions needs to be overcome for model construction and cali-
bration. As several approaches are taken to address these obstacles [28–30], it is
anticipated that genome-scale kinetic models have promise for wide application
in the future.
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